Approximating the Pareto set of multiobjective linear programs via robust optimization

نویسندگان

  • Bram L. Gorissen
  • Dick den Hertog
چکیده

The Pareto set of a multiobjective optimization problem consists of the solutions for which one or more objectives can not be improved without deteriorating one or more other objectives. We consider problems with linear objectives and linear constraints and use Adjustable Robust Optimization and Polynomial Optimization as tools to approximate the Pareto set with polynomials of arbitrarily large degree. The main di erence with existing techniques is that we optimize a single (extended) optimization problem that provides a polynomial approximation whereas existing methods iteratively construct a piecewise linear approximation. The proposed method has several advantages, e.g. it is more useful for visualizing the Pareto set, it can give a local approximation of the Pareto set, and it can be used for determining the shape of the Pareto set. keywords: Pareto set; multiobjective; polynomial inner approximation; robust optimization; polynomial optimization; SOS JEL classi cation: C61

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

ML-MOEA/SOM: A Manifold-Learning-Based Multiobjective Evolutionary Algorithm Via Self-Organizing Maps

Under mild conditions, it can be induced from the Karush–Kuhn–Tucker condition that the Pareto set, in the decision space, of a continuous Multiobjective Optimization Problems(MOPs) is a piecewise continuous ( 1) m D   manifold(where m is the number of objectives). One hand, the traditional Multiobjective Optimization Algorithms(EMOAs) cannot utilize this regularity property; on the other han...

متن کامل

A variational approach to define robustness for parametric multiobjective optimization problems

In contrast to classical optimization problems, in multiobjective optimization several objective functions are considered at the same time. For these problems, the solution is not a single optimum but a set of optimal compromises, the so-called Pareto set. In this work, we consider multiobjective optimization problems that additionally depend on an external parameter λ ∈ R, so-called parametric...

متن کامل

Robust Nonlinear L2 Filtering of Uncertain Lipschitz Systems via Pareto Optimization

A new approach for robust H∞ filtering for a class of Lipschitz nonlinear systems with time-varying uncertainties both in the linear and nonlinear parts of the system is proposed in an LMI framework. The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting H∞ filter guarantees asy...

متن کامل

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012